

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Information Technology (NBA Accredited)

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Course Outcome

Session 2020-21
Department of Information
Technology

Website: www.kiet.edu

KIET GROUP OF INSTITUTIONS, GHAZIABAD

 $\textbf{Department of Information Technology} \ (\textbf{NBA Accredited})$

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Index

		3 rd Semester
S No.	Subject Code	Subject Name
1	KAS-302	Maths IV
2	KAS-301	Technical Communication
3	KCS-301	Data Structure
4	KCS-302	Computer Organization and Architecture
5	KCS-303	Discrete Structures & Theory of Logic
6	KNC-301	Computer System Security
7	KCS-351	Data Structures Using C Lab
8	KCS-352	Computer Organization Lab
9	KCS-353	Discrete Structure & Logic Lab
10	KCS-354	Mini Project or Internship Assessment

		5 th Semester
S No.	Subject Code	Subject Name
1	KCS 055	Machine Learning Techniques
2	KNC 502	Indian Tradition, Culture and Society
3	KCS 501	Database Management Systems
4	KCS 503	Design And Analysis Of Algorithm
5	KCS 054	Object Oriented System Design
6	KIT 501	Web Technologies
7	KCS 551	Database Management Systems Lab
8	KCS 553	Design and Analysis of Algorithm Lab
9	KIT 551	Web Technologies Lab
10	KCS554	Skill Development. & Mini Project

Website: www.kiet.edu

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Information Technology (NBA Accredited)

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

		7 th Semester
S No.	Subject Code	Subject Name
1	RCS-071	Application of Soft Computing
2	RCS-075	Cloud Computing
3	RIT-701	Cryptography & Network Security
4	RCS-702	Artificial Intelligence
5	ROE-074	Understanding the human being Comprehensively Human Aspiration audits fulfillment
6	RIT-751	Cryptography & Network Security Lab
7	RCS-752	Artificial Intelligence Lab
8	RIT-753	Industrial Training
9	RIT-754	Project

CO PO and Mapping of CO PO 2nd Year

(2019-2023 BATCH)

Session:- 2020-21 Semester:- 3rd

S.No.	Subject	Code
1	Math-IV	KAS 302
2	Technical Communication	KAS 301
3	Data Structure	KCS 301
4	Computer Organization and Architecture	KCS 302
5	Discrete Structures & Theory of Logic	KCS 303
6	Computer System Security	KNC 301
7	Data Structures Using C Lab	KCS351
8	Computer Organization Lab	KCS352
9	Discrete Structure & Logic Lab	KCS353
10	Mini Project or Internship Assessment	KCS354

Theory

	CO1		entify the	he applic	cation of p	partial diff	erential e	equations a	and apply	for solvin	ng linear	and non-l	inear part	ial differe	ntial	K1,K3
	CO2							partial diff eat, Wave		•	•	_		separation	of	K1,K3
Mathematics -IV	CO3	١ .	emembe gression		ncept of r	noments, s	skewers,	moment g	enerating	function,	curve fit	ting and a	ınalyze th	e correlat	ion and	K1,K4
(KAS 302)	CO4					probability ributions.	, random	variable a	and apply	for solvir	ng the pro	blem rela	ted to dis	crete and		K1,K3
	COS		nderstar operties		atistical n	nethod of o	lata sam _l	ples , hypo	thesis tes	ting and a	applying t	he study	of control	chart and	l their	K2,K3
CO \ PO Maj	ping	I	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3	3	2	3	2	3	2						3	2
CO2			3	3	3	3	2	3	1				1	3	3	3
CO3			3	3 2 2 3 3 1 3 3 3 3 2 3 3 2 3 3												2
CO4											2					
CO5			3	3	3	3	3	3	1				1	3	3	3
Avg			3	3	2.6	2.6	2.6	3	1.4				1.25	3	3	2.4
	C	CO1		nts will b as Engin		d to unders	tand the	nature and	l objectiv	e of Tech	nical Con	nmunicat	ion releva	nt for the	work	K1,K2
Technical		CO2	Studen dimen		itilize the	technical	writing f	or the purp	oses of T	Technical	Commun	ication ar	nd its expo	osure in v	arious	К3
Communication (KAS301)	on	CO3	Studen	nts woul	d imbibe	inputs by 1	oresentat	ion skills t	o enhanc	e confider	nce in fac	e of diver	rse audien	ce.		К3
	C	CO4		ical com		on skills w	rill create	a vast kno	ow-how o	of the appl	lication o	f the lear	ning to pro	omote the	ir	K6
CO5 It would enable them to evaluate their efficacy as fluent & efficient communicators by learning the voice-dynamics.									K5							
CO\PO M	appin	g	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	1	1	2	2	2	2	2	1
CO2										1	1	3	3	2	1	2
CO3										1	2	3	2	2	1	1
CO4								2	1		1	3	2	3	2	2
CO5											2	3	1	1	1	1
Avg	Avg 1.5 1 1 1.6 2.8 2 2 1.4 1.4										1.4					

	CO1				y of algor		lizing vari	ous data	structures	and their	represent	ations in 1	memory		K1,K2	
Data	CO2	Descri	be the cor	ncept of re	ecursion a	nd its imp	olementati	ion on va	rious data	structure	s.				K2,K3	
Structures (KCS 301)	CO3	Apply	various se	earching a	and sortin	g algorith	ms.								К3	
	CO4		Analyze the algorithm and implementation of non-linear data structures such as searching and sorting by comparing their computational efficiency.													
	CO5	Evalua	Evaluate the various solutions of a real-world problem using data structures and algorithms.													
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		2	2	2	2	1							2			
CO2		2	2	2	2	2							1			
CO3		3	2	2	2	1				1		1	2	1		
CO4		3	3	2	3					1		1	1	2	1	
CO5		3	3	2	3	1				1		2	2	2	2	
Avg	Avg 2.6 2.4 2 2.4 1.25 1 1 1.33 1.6 2.6 2.4											2.4				

	CO1	Describe	the basic of	organizatio	on and ope	ration of th	ne compon	ents of a d	igital com	puter syste	em.				K1,K2		
Computer Organization	CO2	Illustrate	various ar	ithmetic a	nd logical	operations	on differe	nt types of	numbers t	o design a	n arithmet	ic and logi	c unit.		K4		
and Architecture	CO3	Analyze	the perfori	nance issu	es of the p	rocessor a	nd classify	the contro	ol unit imp	lementatio	n techniqu	es.			K4		
(KCS 302)	CO4	Categoria	ze the hier	hierarchical memory system and examine the virtual memory implementation techniques.													
	CO5	-	re the different I/O data transfer techniques, and describe the different ways of communication among I/O and standard I/O interfaces														
CO \ PO Map	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1		2	2	1	1								1	1			
CO2		3	2	2	1								1	1			
CO3		3	3 2 2 1 1 1 2												1		
CO4		2	2	2	1								1	1	1		
CO5		3	2	2	1								1	1	1		
Avg		2.6	2	1.8	1								1	1.2	1		

	CO1	Acquire I mathemat									tand the	basic fun	damenta	1	К3
Discrete Structure	CO2	Apply var	ious s	tructures	and prop	perties of	modern	algebra.							K3
and Theory of Logic	CO3	Employ lo	_			_						-	s by appl	ying	K ₃
(KCS-303)	CO4	Explore various problems in the field of computer science using trees and graphs.													
	CO5	Determin	etermine a solution with the help of induction hypotheses, simple induction proofs and recurrences.												
CO \ PO Maj	pping	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	1	2	2	1	2	-	-	-	-	-	2	1	
CO2		2	2	1	1	2	1	-	-	-	-	-	2	1	
CO3	CO3 2 2 2 3 2 1 2 2											1			
CO4		3	3	3	3	3	3	-	-	-	-	-	3	2	3
CO5		2	1	2	2	3	2	-	-	-	-	-	2	3	3
Avg.		2.4	1.8	2	2.2	2.2	1.8						2.2	1.8	2.33

	CO1	To disco	ver softw	are bugs	that pose	cyber sec	urity threa	ats and to	explain h	ow to fix	the bugs	to mitigat	e such thr	eats	K1,K2
	CO2	To disco	over cybei	-attack sc	enarios to	o web bro	wsers and	l web serv	ers and to	explain	how to mi	tigate suc	ch threats		K2
Computer System Security	СОЗ		over and e	•	obile softv	ware bugs	posing cy	yber secu	rity threat	s, explain	and recre	ate explo	its, and to	explain	К3
(KNC-301)	CO4			rgent nee	•	er security	y in critica	al comput	er system	s, networ	ks, and w	orld wide	web, and	to	K4
	CO5	To articulate the well-knowncyber-attack incidents, explain the attack scenarios, and explain mitigation techniques.													K5,K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	1	3	2	2	2	2	3	3	2	1	3	2	1
CO2		2	3	1	3	3	2	1	3	2	2	1	3	1	2
CO3 2 2 3 2 3 2 1 3 1 3 1 3							2	3							
CO4		3	2	3	3	2	3	1	3	3	2	1	3	1	2
CO5		3	2	2	3	3	1	2	3	3	2	1	3	3	1
Avg	Avg 2.6 2 2.4 2.6 2.6 2 1.4 3 2.4 2.2 1 3 1.8 1.8										1.8				

Practical

	CO1	Impleme	ent variou	s Sorting	and Searc	ching Alg	orithms.								К3
Data Structures	CO2	Analyze	the recur	sive impl	ementatio	n of diffe	rent sorti	ng and sea	arching al	gorithms.					K4
Using C	CO3	Impleme	ent variou	ıs data Str	ucture usi	ng static	and dynai	nic memo	ory alloca	tion.					K3,K4
Lab (KCS 351)	CO4	Demons	trate vari	ous opera	tions like	traversal,	insertion	, deletion	on tree da	ıta structı	ire.				К3
	CO5	Design and Implement practical applications based on graphs and shortest paths.													
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	3	2					1	1		2		
CO2		2	2	3	2					1	1		2		
CO3		3	2	3	2					1	1		2	2	
CO4		3	3	3	2					1	1		2	2	2
CO5		3 3 3 2 1 1 1 3 3							3	2					
Avg		2.6	2.4	3	2					1	1		2.2	2.33	2

	CO1	Examin	e the outp	ut of the l	basic logi	c gates fo	r differen	t combina	ations of i	nput.					К3	
Computer	CO2	Design a		ate the co	mbinatio	nal circuit	s for bina	ry arithm	etic (sucl	n as adder	rs, subtrac	tors, and	multiplier	e) and	K5	
Organization Lab (KCS 352)	CO3	_	and simul gic gates	ate combi	inational o	circuits fo	r encoder	s/decode	rs and sele	ection dev	rices mult	iplexers/d	lemultiple	exers	K5	
(1105 552)	CO4	Design a	Design and simulate the basic building block of the sequential circuits (i.e. SR and D Flip Flops) using logic gates.													
	CO5	Design a	and simul	simulate the 2-bit Arithmetic Logic Unit using logic gates.												
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		2	2	2	1					1	1		-	-	-	
CO2		3	3	3	2					1	1		1	-	-	
CO3 2 3 3 2 1 1 1 1 1								1								
CO4		2	3	3	2					1	1		1	2	1	
CO5		2	3	3	2					1	1		1	2	1	
Avg 2.2 2.8 2.8 1.8 1 1 1 1 1.67										1						

	CO1	To Impl	ement vai	rious Set o	operations	S.									K2,K3
Discrete Structure	CO2	To Dem	onstrate v	arious ba	sic Maple	comman	ıds.								K ₁ ,K ₂
and Logic Lab (KCS-	CO3	To Impl	ement vai	rious Indu	ctive tech	nniques, R	Recursive	Techniqu	es and ex	pected val	lue proble	ems using	Maple sci	ript.	K ₃ ,K ₄
353)	CO4	To Desi	gn and Implement practical applications based on graphs and shortest paths.												
	CO5	To Impl	plement various programming problems based on binary search.												
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	3	2	-	-	-	-	1	-	1	1	-
CO2		3	3	3	3	2	-	-	-	-	1	-	1	1	-
CO3		3	3 2 2 3 3 1 - 1 1											-	
CO4		3	3	2	2	3	-	-	_	-	1	-	2	2	1
CO5		3	2	2	2	3	-	-	-	-	1	-	2	2	1
Avg		3	2.4	2.2	2.6	2.6					1		1.4	1.4	1

	CO1	Analyze	and und	erstand th	ne real life	e problem	and app	ly their kr	nowledge	to get pro	ogrammin	g solution	n		K1,K2,K4	
Mini Project or Internship	CO2				ign proce r needs ar				nd applica	ation of d	iverse tec	hnical kn	owledge a	and	K2,K3	
Assessment	CO3	Use the	various t	ools and t	technique	s, coding	practices	for deve	loping rea	al life sol	utions to t	he proble	em.		K2,K4	
(KCS354)	CO4	Write th	e powerpoint presentation about what they are doing in the project. t the errors in application solutions and its implementations.													
	CO5	Find ou	t the error													
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	3	2	2	2	2	2	3	1	2	3	3	3	
CO2		3	3	3	2	3	3	2	2	3	3	2	3	3	3	
CO3		3	3	3	3	3	3	2	2	3	-	-	3	3	3	
CO4		3	3	2	2	3	3	2	2	3	3	-	3	1	1	
CO5		3	3	2	2	3	3	2	2	3	-	-	2	2	2	
Avg		3	3	2.6	2.2	2.8	2.8	2	2	3	2.33	2	2.8	2.4	2.4	

CO PO and Mapping of CO PO 3rd Year

(2018-2022 BATCH)

Session:- 2020-21 Semester:- 5th

S.No.	Subject	Code
1	Machine Learning Techniques	KCS 055
2	Database Management System	KCS 501
3	Design and Analysis of Algorithm	KCS 503
4	Web Technology	KIT 501
5	Object Oriented System Design	KCS 054
6	Indian Tradition, Culture and Society	KNC 502
7	Database Management System Lab	KCS 551
8	Design and Analysis of Algorithm Lab	KCS 553
9	Web Technology Lab	KIT 551

Theory

	CO1	Underst	tand the	need for	machine	learning	for vario	us proble	em solvii	ng					K_2
Machine	CO2	Underst	tand a wi	de variet	y of lear	ning algo	orithms a	nd how t	o solve c	omputin	g probler	ns.			K_2 , K_3
Learning Techniques	CO3	Design	appropri	ate mach	ine learn	ing algo	rithms an	d apply t	he algori	ithms to	real-worl	d proble	ms.		K ₃ , K ₅
(KCS 055)	CO4	Underst	tand the	neural ne	ts for sol	ving real	time pro	blems a	nd evalua	ating the	performa	ance.			K_5 , K_6
	CO5	Optimiz models.		odels lear	ned and	report or	the expe	ected acc	uracy tha	at can be	achieved	l by anal	yzing the		K4, K5
CO \ PO Maj	pping	PO1	els											PSO2	
CO1		3	3	2	1	2	1	1					1	2	
CO2		2	3	2	2	3	2	1		1			2	2	1
CO3		3	3	3	3	3	2	1		1		1	2	3	2
CO4		3	3	3	3	3	2	1		1		1	2	3	2
CO5		3	3	3	3	3	2	1		1		1	2	3	2
Avg		2.8	3	2.6	2.4	2.8	1.8	1		1		1	1.8	2.6	1.75

	CO1	Acquire	e the kno	wledge	of datab	ase desig	gn metho	dology f	or imple	ementing	real life	applicat	ions.		K3
	CO2	Design	an infor	mation r	nodel ex	pressed	in the for	rm of ER	diagrar	n.					K6
Database Management Systems	CO3	Apply 1	real time	me problems of structured query language to databases.											К3
(KCS 501)	CO4	Analyze	the redu	ndancy	problem	in datab	ase table	es using 1	normaliz	ation.					K4
	CO5	-	the broad	_	of datab	oase man	agement	issues i	ncluding	data int	egrity, se	ecurity a	nd recove	ery in	K4
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

CO1	3	-	-	-	3	-	-	1	1	-	1	2	-	1
CO2	2	1	3	2	3	ı	-	1	1	3	2	1	3	2
CO3	3	-	-	-	3	-	-	1	-	1	1	1	3	1
CO4	2	3	-	3	-	-	-	1	-	-	-	1	2	1
CO5	2	3	-	3	-	-	-	1	-	-	-	1	1	2
Avg	2.4	2.33	3	2.67	3			1	1	2	1.33	1.2	2.25	1.4

	CO1	Analyze	running	time of al	gorithms	using asy	mptotic m	nethods.							K4
Design and	CO2	Analyze	advanced	d data stru	cture algo	orithms to	calculate	their con	nplexities						K4
Design and Analysis of Algorithm	CO3	Create s	olutions o	of Optimiz	zation pro	blems usi	ng Dynar	nic Progra	amming a	nd Greed	y Approac	ch.			K6
(KCS 503)	CO4	Apply b	acktracki	ng and bra	anch & bo	ound appr	oaches fo	r finding	efficient s	olutions.					К3
	CO5			oncepts of lgorithms		pleteness	and find	alternate s	solutions	using Rar	domized	and			K2
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3	2	2	2							2	2	2
CO2		2	3	2	3	2							2	2	2
CO3		2	2	3	2	2				1			2	2	2
CO4		2	3	2	3	2				1			1	2	2
CO5		2	2	1	1	1				1			1	1	1
Avg		2	2.6	2	2.2	1.8				1			1.6	1.8	1.8

	CO1	Apply th	ne knowle	edge of the	e internet	and relate	ed concep	ts vital in	understar	nding web	applicati	on develo	pment.		K3,K6
	CO2	Analyze	the role	of markup	language	es like HT	TML, DH	TML, and	XML in	the web a	ınd its app	olications.			K2,K3
Web Technology (KIT 501)	СОЗ	11 0		ation dev			XML, A	pache Toi	mcat etc.	and identi	ify the env	vironment	s currentl	у	K3,K6
(111 301)	CO4	Analyze and JSP	•	web page	es using c	lient-side	programi	ming Java	Script and	d develop	the web a	application	n using se	rvlet	K2,K4, K6
	CO5	Understa	and the in	npact of d	atabase co	onnectivit	ty with JE	OBC on w	eb design	ing.					K2, K3, K4
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3	3	3	3	2	-		2	2	2	2	1	2
CO2		2	3	2	3	3	2	-		2	2	2	2	2	3
CO3		2	3	3	3	3	1	-		2	2	3	3	3	3
CO4		3	3	3	3	3	2			1	2	1	3	3	3
CO5		3	3	3	3	3	2			1	1	2	3	1	1
Avg		2.4	3	2.8	3	3	1.8			1.6	1.8	2	2.6	2	2.4

	CO1	Understa applicat		oplication	developi	ment and	analyze tl	ne insight	s of objec	ct-oriented	d program	nming to i	mplemen	t	K ₁ ,K ₂ ,K ₄
Object Oriented	CO2	Underst	and, anal	yze and a	pply the r	ole of ove	erall mode	eling cond	cepts (i.e.	, System,	structura	l).			K ₂ ,K ₃ ,K ₄
System	CO3	Learn th	e structui	red analys	sis / struct	ured desi	gn and an	alyze the	oops pro	gramming	g style.				K ₂ ,K ₄
Design (KCS 054)	CO4	Apply a	nd evalua	ite the cor	ncepts of	C++ for t	he implen	nentation	of object	-oriented	concepts.				K3, K5
	CO5	Design a	and evalu	ate the pr	ogrammi	ng concep	ots to imp	lement ob	ject-orie	nted mode	eling in C	++.			K5, K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	3	3	2	-	2	2	1	2	3	2	2
CO2		3	3	2	3	3	3	-	2	3	2	3	3	3	3
CO3		3	2	2	2	3	3	-	2	2	2	2	3	2	2
CO4		3	3	3	3	3	3	-	2	3	2	3	3	2	2
CO5		3	3	3	3	3	3	-	2	3	2	3	3	2	2
Avg		3	2.6	2.4	2.8	3	2.8		2	2.6	1.8	2.6	3	2.2	2.2

	CO1	To ident	ify and u	nderstand	the roots	and detai	ls of Soci	ety State a	and Polity	in India.					K1, K2
Indian	CO2	To unde	rstand the	importar	nce of Ind	ian Litera	ture, Cult	ure, Tradi	ition, Prac	ctices and	to apply	in the pres	sent syster	m.	K2, K3
Tradition, Culture and	CO3									e-Vedic a	nd Vedic	Religion,	Buddhisn	n,	K3, K4
Society (KNC 502)	CO4	To analyze the Science, Management and Indian Knowledge System and to apply in the present system. To evaluate the Indian Architect, Engineering and Architecture in Ancient India, Indian's Cultural Contribution to the		K3, K4											
	CO5	CO5 To evaluate the Indian Architect, Engineering and Architecture in Ancient India, Indian's Cultural Contribution to the World and to create environment in Arts and Cultural for the present system.				K5,K6									
CO \ PO Maj	pping	PO1	PO2	the Indian Architect, Engineering and Architecture in Ancient India, Indian's Cultural Contribution to the to create environment in Arts and Cultural for the present system. K5,											PSO2
CO1		2	2	2	2	2	2	1	2	1	1	2	2	1	1
CO2		2	2	2	2	2	2	2	2	1	1	2	2	1	1
CO3		2	2	1	2	2	2	1	2	1	1	2	2	1	1
CO4		3	1	1	1	1	1	1	1	1	1	3	3	2	1
CO5		2	1	and the importance of Indian Literature, Culture, Tradition, Practices and to apply in the present system. the Indian Religion, Philosophy, Practices and in shadow of Pre-Vedic and Vedic Religion, Buddhism, x System Indian Philosophy and to apply in present system the Science, Management and Indian Knowledge System and to apply in the present system. the Indian Architect, Engineering and Architecture in Ancient India, Indian's Cultural Contribution to the to create environment in Arts and Cultural for the present system. RO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PO12 PO11 PO12 PSO1 PSO1 PSO1 PSO1 PSO1 PSO1 PSO1 PSO1		1									
Avg		2.2	1.6	1.4	1.6	1.6	1.6	1.2	1.6	1	1	2.2	2.2	1.4	1

Practical

	CO1	Underst	and and a	apply MY	SQL pro	ducts for	creating	tables, vi	ews, inde	xes, sequ	ences and	l other da	tabase ob	jects.	K1,K2,K3
Database Management	CO2	_					r compan on systen	•	se, banki	ng data b	ase, libra	ry informa	ation syst	em,	K4,K5
Systems Lab (KCS 551)	CO3	Design	and imple	ement sin	nple and	complex of	queries us	sing DDL	, DML, I	OCL and	TCL.				K4,K5
(1105 551)	CO4	Implem	ent PL/So	QL block	s, proced	ure functi	ions, pack	cages and	triggers,	cursors.					K5
	CO5	Demons	strate enti	ty integri	ty, refere	ntial inte	grity, key	constraii	nts, and d	omain co	nstraints	on databa	se.		K1,K3
CO \ PO Map	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	3	2	2	2	1	1	2	1	2	2	2	2
CO2		3	3	2	2	3	1	2	1	2	2	3	3	2	2
CO3		3	2	2	2	2	2	1	1	2	1	2	2	2	2
CO4		2	2	3	2	2	2	2	1	2	2	3	2	1	1
CO5		3	3	2	2	3	1	1	1	2	1	2	3	1	1
Avg		2.6	2.4	2.4	2	2.4	1.6	1.4	1	2	1.4	2.4	2.4	1.6	1.6

	CO1	Implem	ent algori	ithm to so	lve probl	ems by it	erative ap	proach.							K3,K4
Design and	CO2	Implem	ent algori	thm to so	lve probl	ems by d	ivide and	conquer	approach						K3,K4
Analysis of Algorithm	CO3	Implem	ent algori	thm to so	lve probl	ems by C	reedy alg	gorithm a _l	proach.						K6
Lab (KCS 553)	CO4	Implem	ent algori	thm to so	lve probl	ems by D	ynamic p	orogramm	ing, back	tracking,	branch a	nd bound	approach		K2,K3
(Res ses)	CO5	Implem	ent algori	thm to so	lve probl	ems by b	ranch and	l bound a	pproach						K2,K3
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1	3	2	2	1							3	1	1
CO2		2	3	2	3	2							2	1	2
CO3		3	2	2	1	2							2	1	2
CO4		2	2	2	1	2							2	2	2
CO5		2	2	2	2	1							2	2	2
Avg		2	2.4	2	1.8	1.6							2.2	1.4	1.8

	CO1		and funda, Applet,		of web de	evelopme	nt and Ja	va, includ	ling defin	ing classo	es, invoki	ng metho	ds, using	class	K2,K4
Web	CO2			yze, and a		role of sc	ripts/lang	guages lik	e HTML	, DHTMI	L, CSS, X	ML, DO	M, and SA	AX to	K2,K3,K5
Technology Lab	CO3	Underst	and, anal	yze, and	design the	e role of J	avaScrip	t for dyna	mic web	pages.					K2,K4,K5
(KIT 551)	CO4	_	and deplo	•	nt compo	nents usii	ng EJB, a	nd databa	se tables	using JD	BC and p	roduce va	arious rest	ults	K4,K5
	CO5			oy a serve ore it on d		a applica	tion calle	d Servlet	& JSP to	ols to cat	ch form d	lata sent f	rom clien	t,	K3,K4
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3	3	3	3	2	-		2	2	2	2	2	2
CO2		2	3	2	3	3	2	-		2	2	2	2	2	2
CO3		2	3	3	3	3	1	-		2	2	3	3	2	2
CO4		3	3	3	3	3	2			1	2	1	3	2	2
CO5		3	3	3	3	3	2			1	1	2	3	2	2
Avg		2.4	3	2.8	3	3	1.8			1.6	1.8	2	2.6	2	2
	CO1	Analyze	e and und	erstand th	ne real life	e problem	and app	ly their ki	nowledge	to get pr	ogrammiı	ng solutio	n.		K3, K4
Skill	CO2	~ ~		eative des custome		_		_	nd applica	ation of d	iverse tec	hnical kn	owledge	and	K3,K4,K5
Developme nt. & Mini	CO3	Use the	various t	ools and t	echnique	es, coding	practices	for deve	loping rea	al life sol	ution to th	ne problei	n.		K3,K4,K5
Project (KCS554)	CO4	Writing	and pres	entation s	kill by us	sing repor	t about w	hat they	are doing	in mini p	oroject.				K3,K4
	CO5	Find ou	t the error	rs in appl	ication so	olutions ar	nd its imp	lementat	ions.						K3,K4
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2	3	2	2		3	2	3	3	3	3
CO2		3	3	3	2	3	3	2	2	3		2	3	3	3
CO3		3	3	3	3	3				2	3	3	2	3	3
CO4		2	2	2	2	3	2			3	3	3	3	3	3
CO5		3	3	2	3	3	2			3		3	2	3	3
Avg		2.8	2.8	2.6	2.4	3	2.25	2	2	2.8	2.67	2.8	2.6	3	3

CO PO and Mapping of CO PO 4th Year

(2017-2021 BATCH)

Session:- 2020-21 Semester:- 7th

S.No.	Subject	Code
1	Cryptography & Network Security	RIT 701
2	Artificial Intelligence	RCS 702
3	Application of Soft Computing	RCS 071
4	Understanding the human being Comprehensively Human	ROE 074
5	Cloud Computing	RCS 075
6	Cryptography & Network Security Lab	RIT 751
7	Artificial Intelligence Lab	RCS 752
8	Project	RIT 754
9	Industrial Training	RIT 753

Theory

	CO1	Unde	rstand the	basic cor	ncepts and	principle	es used in	cryptogra	aphy.						K ₁ ,K ₂
Cryptography & Network	CO2	2 Apply	the num	ber theory	in crypto	graphy.									K ₃ ,K ₄
Security	CO3	3 Unde	rstand the	concept	of MAC,	hash func	tions and	digital si	gnature.						K_6
(RIT 701)	CO4	Analy	ze the co	ncept of k	tey manag	gement, d	istributio	n and its a	pplication	1.					K_4
	COS	Asses	s the secu	rity issue	s and thei	r implem	entation a	t IP and s	ystem lev	rel.					K ₅
CO \ PO Ma	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	1	2	1	1	1	1	3	-	-	-	2	1	1
CO2		3	3	2	2	1	3	1	1	-	-	-	2	1	1
CO3		3	3 2 2 1 3 1 2 2 1												
CO4		3													
CO5		3													
Avg		3	3 2.2 1.8 1.6 1 2.2 1 1.8 2 1												1
	CO1		ormed and Informed search strategies, Search for games and Design principles of pattern recognition system.												K1, K2
Artificial	CO2	Apply ba	•	ples of A	I in soluti	ons that r	require pro	oblem sol	ving, infe	rence, per	rception, l	knowledg	e represer	ntation,	K3
Intelligence (RCS 702)	СОЗ	Explain	the conce	ots of sup	ervised, u	nsupervis	sed and re	inforcem	ent learnii	ng.					K2, K4
	CO4		Probabili eorganiza		oning for u	ıncertaint	y, parame	eter estim	ation metl	nods and	various cl	assificatio	on technic	ques of	K5
	CO5	Analyze	various s	earching i	for solutio	ns, mach	ine learni	ng techni	ques and o	classificat	tion techn	iques.			K6
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3 3 3 2 3 2 2 3 3												
CO2		3													3
CO3		3	3	2	3	3	2				2		3	3	2
CO4		2	2 2 3 3 2 3 3												2
CO5		2	3	3	3	2	2	2					3	3	3
Avg		2.6	2.8	2.6	3	2.6	2.4	2			2		3	3	2.6

	CO1	Understa	and the fe	asibility o	of applyin	g a soft co	omputing	methodol	logy for a	particula	problem	•			K ₁ ,K ₂	
Application	CO2				ft computi			abilities i	n designii	ng and im	plementir	ng soft co	mputing b	ased	K ₃ ,K ₄	
of Soft Computing (RCS 071)	СОЗ	-		etworks to proaches	_	ecognition	n, classifi	cation and	l regressio	on proble	ns to eval	uate solut	tions by v	arious	K4,K5	
(RCS 0/1)	CO4	Apply a	and design fuzzy logic and reasoning to handle uncertainty and solve engineering problems.													
	CO5	Examine	amine and formulate genetic algorithm to combinatorial optimization problems.													
CO \ PO Maj	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	3	2	3	2	2	1	1		1	3	3	3	
CO2		3	3	3	3	3	2	2		1		1	3	3	3	
CO3		3	3	3	3	3	2	2		1		1	2	3	3	
CO4		3	3	3	3	3	2	2		1		1	1	3	3	
CO5		3	3	3	3	3	2	2		1		1	1	3	3	
Avg	_	3	3	3	2.8	3	3	2	1	1		1	2	3	3	

	CO1		•	numan as	•			ment thi	ough rig	ght under	rstanding	g and di	fferent		K1,K2
Understanding the human being Comprehensively Human	CO2			edge abo							, and po	tentialit	ies of the	e	K1,K2
Aspiration and its Fulfillment (ROE 074)	CO3	Analyz existen	_	ply righ	t unders	tanding t	to identi	fy the in	terconne	ctedness	and co-	-existen	ce in		K3,K4
	CO4			aluate tr							in expre	essions	as humai	ne	K5,K6
	CO5		Demonstrate the understanding of human tradition and its components by expanding participation in a way leading to Universal human order.												
CO \ PO Mapping		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1	1	1	1	1	2	2	3	2	1	2	1	1	1
CO2		1	1	1	1	1	2	2	3	2	1	2	1	1	1
CO3		1	1	1	1	1	2	2	3	3	1	2	1	1	1
CO4		1	1	1	1	1	2	2	3	3	1	2	1	1	1
CO5		1	1	1	1	1	2	2	3	3	1	3	1	1	1
Avg		1	1	1	1	1	2	2	3	2.6	1	2.2	1	1	1

	CO1	Underst	and basic	concept a	and evolut	ion of Clo	oud Comp	outing.							K1,K2	
	CO2	Underst	nderstand the importance of different Cloud enabling technologies and apply their application in real world. Kanderstand and analyze multi layered cloud architecture design along with their applications and challenges.													
Cloud Computing	CO3	Underst														
(RCS 075)	CO4	Underst	derstand and Apply Resource management and analyze security systems in cloud. K3													
	CO5	Analyze Service.	yze and Evaluate the components of open stack, Google Cloud platform, Hadoop, Virtual Box and Amazon web ice.													
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		2	1	1	1	2	1	1	1	1	1	1	2	1	2	
CO2		2	2	2	2	2	1	1	1	2	2	2	2	1	2	
CO3		2	2	2	2	2	2	1	1	2	2	2	2	1	2	
CO4		2	2 2 2 2 2 2 2 2 2 1												2	
CO5		3	3 3 2 3 2 2 2 2 2 2 2 2 2 2												2	
Avg		2.2	2	2	1.8	2.2	1.6	1.4	1.4	1.8	1.8	1.8	2	1.2	2	

Practical

	CO1	Apply c	lassical e	ncryption	technique	es on text.									K1,K2, K3
Cryptography & Network	CO2	Learn th	e implem	entation o	of mathen	natical the	eorems.								K2, K4, K5
Security Lab (RIT 751)	CO3	Learn th	e implem	entation of	of asymm	etric encr	yption tec	hnique ar	nd apply k	ey excha	nge algori	ithm.			K2, K3
(KII 731)	CO4	Learn in	arn implementation of message authentication and digital signature.												
	CO5 Learn simulation of Elliptic Curve Cryptography.														K3, K4
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2	2	1	3	3	1	1	2	2	1	1
CO2		3	3	3	2	2	1	2	1	1	1	2	2	1	1
CO3		3	3	3	2	2	1	3	3	1	1	2	2	1	1
CO4		3													
CO5		3	3 3 2 2 1 3 2 1 1 2 2 1												1
Avg		3	3	3	2	2	1	2.8	2.4	1	1	2	2	1	1

	CO1	Explore PROLO		res of PRO	OLOG pro	ogrammin	ıg languaş	ge, includ	ing basic	syntax, se	lection an	d search	strategies	of	K1,K2
Artificial	CO2	Underst	and synta	x, semant	ics and na	itural ded	uction pro	of systen	of propo	sitional a	nd predica	ate logic.			K2,K5
Intelligence Lab (RCS	CO3	Impleme	ent the rec	cursion an	d sequen	ces using	prolog pro	ogrammir	ıg.						K3,K5
752)	CO4	Demons	monstrate the PROLOG programming language skills in implementing various real-life problems.												
	CO5	Demons	nonstrate LISP programming language skills by solving real life problems through AI prospect.												
CO \ PO Map	ping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2	2	2	2	2	1		1	2		2	2	2
CO2		3	3	3	3	3	2	1		1	2		2	2	2
CO3		3	3	3	3	3	2	1		2	2	1	2	2	2
CO4		3	3 3 3 3 3 3 2 2 2 3 3												
CO5		3	3 3 3 3 3 2 2 2 3 3												3
Avg		3	2.8	2.8	2.8	2.8	2.4	1.8		1.6	2	1.67	2	2.4	2.4

	CO1	Analyze	and und	erstand th	e real life	e problem	in indust	try and ap	ply their	knowledg	ge to get p	orogramm	ing soluti	on.	K2,K3, K4	
Industrial	CO2	00	in the cre social iss		ign proce	ss throug	h the dive	erse techn	ical know	ledge an	d expertis	e to meet	customer	needs and	K3, K, K6	
Training (RIT753)	CO3	Use and	apply the	e various	tools and	techniqu	es, coding	g practice	s for deve	eloping re	eal life sol	ution to t	he proble	m.	К3	
	CO4	Write th	e the report about what are industry person doing in project.													
	CO5	Find ou	d out the errors in software solutions of real-life projects and implementations.													
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	3	3	3	2	-	-	-	3	-	2	1	1	
CO2		3	3	3	3	2	2	-	-	1	2	2	2	2	2	
CO3		2	2	3	3	3	2	-	-	1	2	2	2	2	2	
CO4		2	1	1	3	2	1	-	-	-	3	1	2	1	1	
CO5	•	3	3	2	3	3	1	-	-	1	3	2	2	1	1	
Avg		2.6	2.4	2.4	3	2.6	1.6			1	2.6	1.75	2	1.4	1.4	

	CO1	Select a	nd summ	arize all	aspects of	the real l	life proble	em throug	h survey.						K1,K2	
	CO2	Apply a	cquired k	nowledge	to devel	op workir	ng model a	and plan o	lifferent p	hases for	its execu	tion.			К3	
	CO3	Analyzo	e outcome	e of each p	phase usin	ng various	s tools, tec	chniques,	and codin	g practice	es.				K4	
Project	CO4	Justfy/c	y/defend opinions, validity of ideas or quality of work based on a set of criteria.													
(RIT 754)	CO5	Test the	the working model and modify related phase accordingly. Finally integrate all phases													
CO \ PO Maj	pping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	3	3	3	2	1	1	3	3	3	3	1	1	
CO2		3	3	3	3	2	2	1	1	3	2	3	3	2	2	
CO3		3	3	3	3	2	2	1	1	3	2	3	3	2	3	
CO4		3	3 3 3 2 2 1 1 3 2 2 3 2												3	
CO5		3	3	3	3	2	2	1	1	3	2	1	2	2	3	
Avg		3	3	3	3	2.2	2	1	1	3	2.2	2.4	2.8	1.8	2.4	